

Mathematics Specialist Units 3 & 4 Test 1 2016

Section 1 Calculator Free

Complex Numbers

STUDENT'S NAME: _____

DATE: Thursday 5th November

TIME: 25 minutes

MARKS: 30

INSTRUCTIONS:

Standard Items: Pens, pencils, pencil sharper, eraser, correction fluid/tape, ruler, highlighters, Formula Sheet.

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (6 marks)

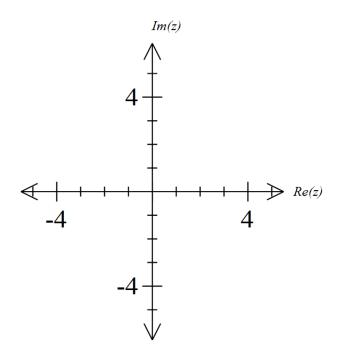
Convert $\frac{-1+i\sqrt{3}}{2}$ to polar form and hence evaluate $\left(\frac{-1+i\sqrt{3}}{2}\right)^8$, giving your result in Cartesian form a+bi.

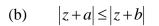
Solve the following equations:

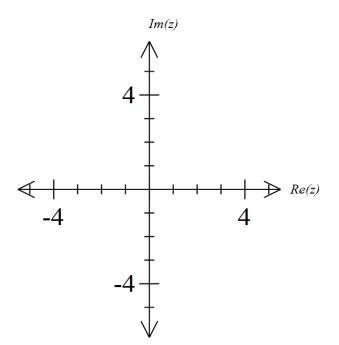
(a)
$$3z^2 + 3z + 1 = 0$$
 [3]

(b)
$$5z^3 - 12z^2 + 5z - 2 = 0$$

[5]


Solve the following equations, stating the roots in polar form and showing them on an Argand diagram:


(a)
$$z^6 = 1$$
 [4]


(b) $z^3 - 64i = 0$

Given that a = 3 + 2i and b = -1 + 2i. Clearly label the set of points on each Argand diagram defined by:

$$(a) \quad |z-b| < 2 \tag{4}$$

Mathematics Specialist Units 3 & 4 Test 1 2016

Section 2 Calculator Assumed

Complex Numbers

STUDENT'S NAME: _____

DATE: Thursday 5th November

TIME: 25 minutes

MARKS: 30

INSTRUCTIONS:

Standard Items:	Pens, pencils, pencil sharper, eraser, correction fluid/tape, ruler, highlighters, Formula Sheet retained from Section 1.
Special Items:	Drawing instruments, templates, three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment).

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

5. (5 marks)

Use your calculator to:

(a) Convert
$$\frac{-1+i\sqrt{3}}{2}$$
 to polar form. [1]

(b) Evaluate
$$\left(\frac{-1+i\sqrt{3}}{2}\right)^8$$
, giving your result in Cartesian form $a+bi$. [2]

(c) Solve
$$5z^3 - 12z^2 + 5z - 2 = 0$$
 [2]

6. (10 marks)

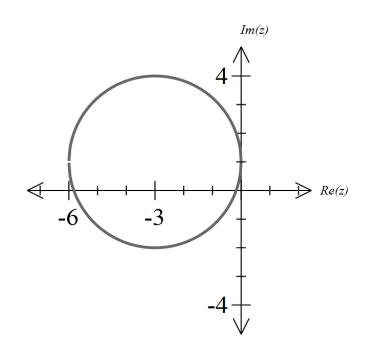
- (a) Are the following statements True or False?
 - (i) $\operatorname{cis}(\pi) = -1$
 - (ii) $\arg(z^{-1}) = -\arg(z)$
 - (iii) $|z^n| = |z|^n \quad \forall n \in \mathbb{Z}$
 - (iv) $(\operatorname{cis} \theta)^n = \operatorname{cis}(n\theta) \quad \forall n \in \mathbb{Z}$

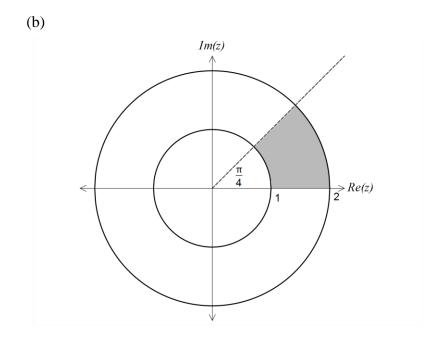
(b) State the conditions under which the following statements are true: [3]

- (i) If $z_1 = x_1 + y_1 i$ and $z_2 = x_2 + y_2 i$ then $x_1 = x_2$ and $y_1 = y_2$
- (ii) If $z_1 = r_1 \operatorname{cis} \theta_1$ and $z_2 = r_2 \operatorname{cis} \theta_2$ then $r_1 = r_2$ and $\theta_1 = \theta_2$

(iii)
$$z^{-1} = \overline{z}$$

(c) Given $z = |z| \operatorname{cis} \theta$, prove $z\overline{z}$ is always purely real. [3]


(a) Prove for
$$z \in \mathbb{C}$$
, $z^{-1} = \frac{\overline{z}}{|z|^2}$ [4]


(b) If $z = \operatorname{cis} \theta$, simplify $z - \frac{1}{z}$.

Describe, using appropriate notation, the following sets of points:

[3]

End of Questions